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SUMMARY

How does information from seconds earlier affect
neocortical responses to new input? We found that
when two groups of participants heard the same sen-
tence in a narrative, preceded by different contexts,
the neural responses of each group were initially
different but gradually fell into alignment. We
observed a hierarchical gradient: sensory cortices
aligned most quickly, followed by mid-level regions,
while some higher-order cortical regions took more
than 10 seconds to align.What computations explain
this hierarchical temporal organization? Linear inte-
gration models predict that regions that are slower
to integrate new information should also be slower
to forget old information. However, we found that
higher-order regions could rapidly forget prior
context. The data from the cortical hierarchy were
instead captured by a model in which each region
maintains a temporal context representation that is
nonlinearly integrated with input at each moment,
and this integration is gated by local prediction error.

INTRODUCTION

Events such as gestures, melodies, speech, and actions unfold

over time, so we can only perceive and understand information

in the present by integrating it with information from the past

(Buonomano and Maass, 2009; Fuster, 1997; Kiebel et al.,

2008). This process is complex because the world contains

meaningful structure on scales ranging from milliseconds to mi-

nutes (Gibson et al., 1982; Poeppel, 2003; Zacks and Tversky,

2001); a series of phonemes makes up a word, a series of words

forms a sentence, and a series of sentences expresses an idea.

How is the human brain organized to integrate information

across multiple timescales in parallel?

We and others have argued that the human brain employs a

distributed and hierarchical architecture for integrating informa-

tion over time (Baldassano et al., 2017; Fuster, 1997; Hasson

et al., 2015; Honey et al., 2012; Lerner et al., 2011; Runyan

et al., 2017). The architecture is distributed because almost all

regions of the human cerebral cortex exhibit temporal context

dependence in their responses. The architecture is hierarchical
because early sensory regions integrate over short timescales

(milliseconds to seconds), while higher-order regions integrate

information over longer timescales (seconds to minutes).

The timescale hierarchy is a highly reliable phenomenon with

functional implications across the brain (Baldassano et al.,

2017; Burt et al., 2018; Chaudhuri et al., 2015; Cocchi et al.,

2016; Demirtaş et al., 2019; Watanabe et al., 2019), yet our

models of the underlying information processing have remained

phenomenological. What are the computations that integrate

past and present information within the hierarchical networks

of our brains? How is past and present information represented

within each stage of processing and then passed on to higher

stages?We set out to answer these questions using a combined

empirical and modeling approach.

To investigate how information is integrated over time, prior

studies have measured the ‘‘processing timescales’’ of different

brain regions. Processing timescales were quantified by

comparing a brain region’s response to a stimulus at time t

across various contexts, where the stimulus properties at time

(t� t) were altered. For example, Lerner et al., (2011) used func-

tional magnetic resonance imaging (fMRI) to measure the neural

responses to temporally manipulated versions of an auditory

narrative (Figure 1A). They compared the responses during the

original intact clip against the response during versions of the

stimulus in which the ordering of words, sentences, or para-

graphs was scrambled. The authors observed that early sensory

regions exhibited similar responses to the intact and scrambled

audio; these early regions were said to have a short processing

timescale, because their responses at eachmoment were largely

independent of prior context. Moving toward higher-order

cortices, such as temporoparietal junction, precuneus, and

lateral prefrontal cortex, Lerner et al. (2011) observed different

responses to the intact and scrambled input. In these higher-

order regions, the response at one moment could depend on

stimulus properties frommore than 30 s earlier (Figure 1B). Over-

all, higher stages of cortical processing were said to have longer

processing timescales, because their responses at time t were

affected by properties of the stimulus frommany seconds earlier

(Figure 1C).

In this study, we first developed computational models that

could explain the key empirical phenomena from prior studies

(e.g., Lerner et al., 2011). If we have measured the neural re-

sponses to temporally ‘‘intact’’ and ‘‘scrambled’’ versions of

the stimulus, then we can quantify the similarity of responses

to the same segment presented in the intact and scrambled

order as the ‘‘intact-vs-scramble correlation’’ (Figure 1D). The
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Figure 1. Computational Models of Distributed and Hierarchical Process Memory

(A) Schematic of experiment and results from Lerner et al. (2011). fMRI participants listened to an intact auditory narrative as well as versions scrambled at the

scales of words, sentences, and paragraphs.

(B) Lower-level regions (e.g., auditory cortex) exhibited responses that were reliable across all stimuli, with little dependence on prior temporal context. By

contrast, higher-level regions (e.g., precuneus) exhibited responses that depended at each moment on tens of seconds of prior context in the stimuli.

(C) Schematic of the ‘‘processmemory hierarchy.’’ Lower-level regions (e.g., sensory regions) exhibit shorter integration timescales, integrating over entities such

as phonemes and words. Higher-level regions (e.g., lateral and medial parietal regions) exhibited longer integration timescales, combining information on the

scale of entire events (e.g., paragraphs of text).

(D) Schematic of predicted data when comparing the representations of brain regions sensitive to temporal context on different scales. The dependent variable is

the ‘‘intact-scramble correlation,’’ quantifying the similarity of neural response to the same input in different contexts.

(E) Schematic of a signal gain model for explaining the pattern of brain responses shown in (D).

(F) Schematic of the hierarchical linear integrator (HLI) model.
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two key phenomena of hierarchical context dependence are

then as follows:

(P1) lower processing stages are largely insensitive to tem-

poral context (Figure 1D, left bars); and

(P2) progressively higher processing stages are increasingly

sensitive to temporal context extending further into the

past (Figure 1D, right bars).

We found that P1 and P2 could be explained by a model that

does not invoke explicit temporal integration (the ‘‘signal gain

model’’; Figure 1E) and also by a model that does employ tem-
2 Neuron 106, 1–12, May 20, 2020
poral integration (the ‘‘hierarchical linear integrator’’ [HLI]

model; Figure 1F). To decide between these two models, we

empirically tested a distinctive prediction of hierarchical inte-

gration models: when two people with distinct neural states

are presented with a common input, their neural responses

should gradually align over time as the common input con-

tinues, and this alignment should occur more slowly in higher-

order regions.

Our empirical measurements revealed new evidence that

cortical circuits hierarchically integrate input with prior context.

We measured moment-by-moment changes in fMRI responses
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as two groups of participants heard the same natural auditory

speech segments preceded by different contexts. We found

that the fMRI responses gradually aligned over time across the

two groups, when each group heard the same input preceded

by a different context. The responses aligned earliest in sensory

regions but later and later in regions at consecutive stages of

processing. This finding is consistent with the predictions of

the HLI model but could not be explained by the signal gain

model. Thus, the topography of these alignment patterns pro-

vides new evidence for a distributed and hierarchical representa-

tion of temporal context in the human brain.

If temporal integration is linear in the brain, then regions that

are slower to integrate new information should also be slower

to forget old information. But is this observed? To measure

forgetting, we examined the rate at which fMRI states ‘‘separate’’

when two groups of participants begin with a common context,

but are then exposed to distinct input. We found that, although

higher-order regions aligned across contexts more gradually

than sensory regions, they did not separate more gradually.

This decoupling of alignment times and separation times rules

out standard linear integrator models and seems to require a

mechanism for flexibly varying how new and old information

are combined.

Finally, to account for the decoupling between alignment

times and separation times in cortical dynamics, we proposed

a model of temporal integration, the hierarchical autoencoders

in time (HAT) model. By combining non-linear integration and

context gatingmechanisms, HAT generated learning-dependent

representations that account for the existing empirical phenom-

ena (P1 and P2, above) while also exhibiting hierarchical align-

ment times and a distinct set of timescales for alignment and

separation. In the HAT model, integration is flexible: at appro-

priate moments, such as the start of a new event, the model

can generate a response that depends less on the prior context.

We conclude that each stage of cortical hierarchy maintains a

temporal context representation, which is continually updated as

a simplified combination of past and present information and

which can also be reset following surprising input.

RESULTS

We considered two computational models to account for the

empirical phenomena P1 and P2: amodel based on engagement

with the stimulus (signal gain model, Figure 1E), and amodel em-

ploying hierarchical temporal integration (the HLI model;

Figure 1F).

The Signal Gain Model
It is possible to account for the hierarchical-context-depen-

dence phenomena (P1 and P2; Figure 1D) without invoking

distributed temporal integration. Instead, one can offer an expla-

nation based on ‘‘signal gain’’ combined with a qualitative notion

of ‘‘engagement.’’ This model makes three assumptions: (1)

when participants engage more deeply with a stimulus, the

gain of their response to that stimulus increases relative to the

noise level, and they produce more reliable neural responses

to that stimulus (Cohen et al., 2018; Dmochowski et al., 2012);

(2) participants are less ‘‘engaged’’ with temporally scrambled
stimuli than with intact stimuli; and (3) the effects of engagement

on neural reliability are larger in higher-order cortical regions. Un-

der these assumptions, the existing empirical data can be ex-

plained. First, sensory neocortex would be largely unaffected

by engagement (and thus unaffected by scrambling prior

context); second, higher-order regions would respond less reli-

ably to scrambled stimuli, and so their intact-versus-scramble

correlations would also be decreased (Figure 1E; see STAR

Methods). Thus, the signal gain model could explain data from

the scrambling experiment, without recourse to any neural repre-

sentation of temporal context, and it provides an important

null model.

The Hierarchical Linear Integrator (HLI) Model
It is also possible to account for the hierarchical-context-depen-

dence phenomena (P1 and P2; Figure 1D) using a model that

explicitly represents and integrates temporal context. We used

a linear integration approach inspired by neural integrators in

systems neuroscience and mathematical psychology (Huk and

Shadlen, 2005; Koulakov et al., 2002; Mazurek et al., 2003;

Townsend and Ashby, 1983) and in particular by the seminal

‘‘temporal context model’’ (TCM) in memory research (Howard

and Kahana, 2002). In TCM, the arrival of each new stimulus gen-

erates linear ‘‘drift’’ of an internal context variable. In particular, if

we define the current context as CNTX(t) and the current input as

IN(t), a simple form of the update equation for TCM is

CNTXðt + 1Þ = riCNTXðtÞ+ biINðtÞ;

where ri and bi are parameters that determine the proportion of

old and new information in the updated context.

To generate an HLI, we stacked these linear integrator units in

stages, and we increased r (and decreased b) at higher levels of

processing. In this way, we increased the proportion of prior in-

formation retained at higher stages of the simulated hierarchy.

The input to the higher-level integrators was the updated

CNTX vector from the lower-level integrator, generating a

cascade of temporal integration (Figure 1F; see STAR Methods).

Testing Computational Models of Hierarchical Context
Dependence
We quantitatively confirmed that both the signal gain model and

the hierarchical linear integrator could capture the previously

described phenomena (P1 and P2) of hierarchical context

dependence (Figures 1D and S2; STAR Methods). Therefore,

to provide direct evidence for hierarchical temporal integration

(and to rule out the signal gain model), it was necessary to collect

more fine-grained measurements of the neural processing of

temporally extended sequences.

Measuring the Moment-by-Moment Construction of
Temporal Context
We developed a time-resolved fMRI pattern analysis approach

for measuring context-dependent responses to auditory narra-

tives. To understand the time-resolved analysis, consider a

case in which two groups of subjects are exposed to the same

�20-s segment of natural speech (e.g., sentence E), but this

shared segment is preceded by different speech segments
Neuron 106, 1–12, May 20, 2020 3



Figure 2. Gradual Alignment of Responses to a Common Stimulus Preceded by Different Context

(A) For each sentence, inter-subject pattern correlation (ISPC) was measured by correlating the spatial pattern of activation at each time point across the two

groups.

(B) ISPCwas calculated between one subject and the average of the rest of the subjects within the intact group (rII), within the scrambled group (rSS) or across the

intact and scrambled groups (rSI).

(C) ISPC analysis for the same sentence preceded by different contexts (DE:CE). Here, sentence E followed sentence D for the intact group but it followed

sentence C for the scrambled group.

(D) Average ISPC for all sentences in ROIs within an auditory (A1+) region and a right TPJ region. Shaded area indicates a 95%confidence interval on individual rSI

estimates.

(legend continued on next page)
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across the two groups (e.g., sentence C or sentence D; Fig-

ure 2A). In this setting we can ask how similar the neural re-

sponses are within and across these groups, second by second,

as they process the shared segment from start to end. At the

start of the sentence, the two groups share none of their prior

context, but by the end of the sentence, they share much greater

amounts of prior context.

To quantify neural similarity within and across groups, we

calculated the inter-subject pattern correlation (ISPC) at each

time point. Three kinds of ISPCwere calculated (STARMethods):

similarity within the intact group (i.e., intact-intact correlation

[rII]), similarity within the scramble group (i.e., scramble-

scramble correlation [rSS]), and similarity across the intact and

the scramble groups (i.e., intact-scramble correlation [rSI]) (Fig-

ures 2B and 2C).

We first examined the curves of rII, rSS, and rSI within one

lower-order region (near A1+; Figure 2D, left) and one higher-or-

der region (near the temporal-parietal junction [TPJ]; Figure 2D,

right). In both regions, we observed that (1) the rII and rSS curves

were essentially constant from the beginning to the end of a

segment; and (2) the rSI curve ramped upward over time, as

the intact and scrambled groups were exposed to more and

more shared input. These patterns (flat rII, flat rSS, and ramping

rSI) are preserved across the cerebral cortex (Figures 2E and

S4A) when we broaden our analysis to a cortex-wide atlas of

regions of interest (ROIs) (Schaefer et al., 2018).

We next examined how the temporal integration profile (rII, rSS,

and rSI) differed across regions. To illustrate the basic phenome-

non,weexamined the rII and rSS curves (within-group correlation)

for one sensory region (A1+) and one higher-order region (right

TPJ). In A1+, we found that rII and rSS were similar to each other

across the whole segments, suggesting that early auditory cortex

showed highly reliable responses to the same segments in the

two conditions in which the contexts are different (Figure 2D,

left). In rTPJ, on the other hand, the rII curve was significantly

higher than the rSS (t(21) = 2.83, p = 0.007, t test of mean rII

and rSS values per segment; Figure 2D, right). The increased

response reliability in the TPJ for the intact condition could reflect

greater engagement or the fact that the intact stimulus is more

familiar. However, the rII and rSS curves do not provide a time-

resolved measurement of shared context representation, which

can instead be obtained via the across-group correlation (rSI).

The across-group correlation (rSI) ramped upward over time

within each story segment, and this ramping occurred later in

the higher-order cortex (TPJ) than in sensory cortex (A1+). In

A1+, the rSI time course begins to achieve alignment at 4 s

after the segment onset, while in TPJ the rSI time course

begins to achieve alignmentmore than 7 s after onset (Figure 2D).

Importantly, the fact that rSI = 0 at the onset of the segment

does not necessarily reflect a neural context: the hemody-

namics introduce temporal smoothing, carrying signal from the
(E) The rII, rSS, and rSIDE:CE curves are shown for individual regions, grouped by ‘‘

for each group of regions is in thick blue (rII), orange (rSS), and gray (rSIDE:CE). N

individual regions, while the rSI curves show ramping in almost all regions.

(F) Simulation of rII, rSS, and rSI for the signal gain model. The rSI curves exhibit

(G) Simulation of rSS and rSI for the HLI model. The alignment time is greater in hi

parietal junction.
previous segment into the start of the current segment, even

if the underlying neural response is unaffected by context.

This hemodynamic artifact makes it difficult to use blood-

oxygen-level-dependent (BOLD) imaging to estimate the short-

est possible time at which temporal context effects operate.

However, the hemodynamics cannot account for the ramping

in TPJ occurringmore than 3 s later than in A1+. Instead, the later

alignment time in TPJ points to a neural context effect, with a

longer timescale in higher-order regions. Thus, we tested the

generality of this hierarchical pattern by mapping the timescales

of context construction across the cerebral cortex.

Moment-by-Moment Context Analysis Reveals a
Hierarchical Organization
The alignment of response across the intact and scramble

groups (rSI) increased over time in almost every ROI, and the la-

tency of this ramping differed across brain regions. Because the

shape of the rSI curve is not meaningful when the response in the

scrambled condition is unreliable, we restricted our analysis of

the rSI ramping to the 83 ROIs in which there was a reliable

response to the scrambled stimulus (i.e., mean rSS > 0.06; see

STARMethods; Figure S3A). After confirming that a logistic func-

tion could accurately summarize the rSI curves (Figure S3C), we

used logistic fitting to quantify the timescale of rSI ramping in

each ROI. We defined the ‘‘alignment time’’ as the time at which

the logistic curve reaches its half maximum.We excluded 4 ROIs

that were not well fit by a logistic function (Figure S3B), and 9

ROIs for which alignment times were unreliable (assessed by

bootstrapping; Figure S3D; see STAR Methods). We thus

entered 70 ROIs into further analysis. A direct visualization of

the raw rSI time courses in each ROI reveals that the logistic

fitting accurately captured the profile of the rSI curves and that

alignment times differ across areas (Figures 2E and S4).

Mapping the alignment times across the lateral and medial

cortical surface, we observed a ‘‘hierarchy of context construc-

tion’’ in the human brain. Early auditory regions first arrive at a

shared context-dependent response, followed by consecutive

stages of the cortical hierarchy. Alignment times of rSI curves

gradually increased from sensory cortex (alignment times �4 s)

toward higher-order regions (alignment times of 10 s or longer;

Figure 3, top). Plotting rSI curves along the auditory processing

pathway confirmed the hierarchical organization (Figure 3,

bottom): lower-level regions (e.g., A1+) quickly arrived at a

shared response between intact and scrambled groups, while

regions in inferior parietal and medial parietal cortex took longer

to align across the intact and scrambled groups.

Hierarchical Integrator Model Predicts Hierarchical
Context Construction
The results of hierarchical context construction rule out the

signal gain model, because it could not account for different
alignment time.’’ The individual region curves are pale gray, while mean curves

ote that the rII and rSS curves do not ramp, either for the mean curve or for

ramping, but the alignment times are stable across levels.

gher levels of the HLI model. A1, primary auditory cortex; rTPJ, right temporal-

Neuron 106, 1–12, May 20, 2020 5



Figure 3. Hierarchical Timescales of Context

Construction across the Human Cerebral

Cortex

Cortical map of the timescale at which neural re-

sponses align to a common input preceded by

different contexts (top). Alignment time is quantified

as the time for each rSIDE:CE curve to reach half its

maximum value. Fitted logistic curves for four

representative ROIs along the cortical hierarchy

(bottom). A1, primary auditory cortex; IPL, inferior

parietal lobe; rSI, intact-scramble ISPC; STG, su-

perior temporal gyrus.
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rates of context construction at different levels of the cortex (Fig-

ure 2F). On the other hand, the HLI model could account for

these inter-regional differences, because its higher-level integra-

tors have longer time constants; the rSI curves in the HLI model

ramp upward later for higher-level linear integrators (Figure 2G;

t = �104, p < 0.0001), and this effect is magnified by the

fact that the integrators are stacked in a hierarchy (Figure S5C;

Table S1).

Because the signal gain model can capture variations in the

mean level of the rII and rSS curves and the asymptotic height

of each rSI curve (which may reflect variation in engagement

across the intact and scrambled stimuli) (Figure 2F), the signal

gain mechanisms should still be considered as a component

of future models. However, the dominant pattern in our data

(the hierarchical variation in alignment times) requires a model

that maintains temporal context to varying degrees across

regions.

Time-Resolved Analysis of Context Forgetting
The time-resolved pattern analysis indicates that information is

temporally integrated second by second throughout the cortex.

But is integrating information from the past always desirable? For

example, if the subject of a new sentence is unrelated to the verb

of the previous sentence, then perhaps we might want to sepa-

rate these pieces of information rather than integrate them.

Therefore, in addition to the process of integrating information

over time, we also measured the neural process of separating

information from distinct events.

We have already shown that the two groups will gradually

construct an aligned mental context and begin to respond in

the same way to common input (Figure 4A, middle), but what

happens when the common input ends? At this moment, the

two groups begin to hear different inputs, and yet these different

inputs are preceded by the shared context. We expect that the

two groups should gradually ‘‘forget’’ the previously shared

mental context, but its influence may persist for some time (Fig-

ure 4A, right).
6 Neuron 106, 1–12, May 20, 2020
How quickly will individual brain regions

forget the previous shared context? In a

linear integrator model, such as HLI, infor-

mation is integrated with a fixed time con-

stant, and so the rate of accumulating

new information is strongly correlated

with the rate of forgetting old information
(STAR Methods). This leads to a testable prediction: if temporal

integration within each region has a fixed time constant, then re-

gions which integrate information more slowly (i.e., higher-order

regions) should also forget prior information more slowly. Thus,

we can test the class of linear integrator models by testing

whether rates of contextual alignment and separation are corre-

lated across regions.

Contrary to the predictions of linear integrator models, rates of

alignment and separation were uncorrelated in the human cere-

bral cortex. We operationalized the ‘‘forgetting’’ of shared

context as the ‘‘separation time’’ of neural responses that begin

with a common context. The separation time was measured

analogously to alignment time: how quickly neural responses

diverge when participants processed different input preceded

by a shared prior context. To visualize the relationship between

context construction and forgetting, we grouped brain regions

according to their alignment time (rSICONSTRUCT or rSIDE:CE)

and then visualized the rate at which they forgot prior informa-

tion (rSIFORGET or rSICD:CE). The rSIFORGET curves decreased

at a similar rate, regardless of whether the corresponding

rSICONSTRUCT curve had a fast or a slow alignment time (Fig-

ure 4D). Moreover, we observed no correlation between align-

ment time and separation time across ROIs (r = �0.13, p =

0.33; Figure S5B). This decoupling of alignment times and

separation times cannot be explained by fixed-rate linear inte-

grator models, such as HLI, in which the correlation between

alignment times and separation times is very strong (r = 0.99;

Figure S5B).

Gated Integration Using HAT
The mismatch of alignment and separation times in cortical dy-

namics indicates that the integration rate is variable, consistent

with the notion that temporal sequences are grouped into

events, and that prior context is more rapidly forgotten at event

boundaries (Reynolds et al., 2007; Zacks and Tversky, 2001).

Therefore, we set out to develop a model that can account for

the existing data on hierarchical temporal processing while



Figure 4. Distinct Timescales of Alignment

and Separation in Cortical Dynamics

(A) Schematic of internal representations falling into

and out of alignment as common and distinct inputs

are presented. Two groups gradually construct a

shared context when they listen to the same input

preceded by different contexts, and thus their

neural responses fall into alignment. When com-

mon input ends, the two groups begin to process a

distinct input preceded by a shared context, and

participants forget this shared context over time.

(B) Schematic of ISPC analysis, when different

speech segments are preceded by the same

context. Here, segment D in the intact group and

segment E in the scramble group were both pre-

ceded by segment C (CD:CE).

(C) Empirical rSIDE:CE results grouped by alignment

time of 3–6 s, 6–9 s, and 9–11 s.

(D) Empirical rSICD:CE results, using the same region

groupings from the rSIDE:CE results in (C). Regions

at different levels of cortical hierarchy can forget

context at similar rates. rSI, intact-scramble ISPC.
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also providing mechanisms for grouping temporal sequences.

We developed the HAT model, which employs a nonlinear and

gated approach to temporal integration. The HAT model was

inspired by TRACX2, a recurrent network model of human

sequence learning (French et al., 2011; Mareschal and

French, 2017).

The HAT model is composed of a stack of ‘‘autoencoder in

time’’ (AT) units (Figure 5B; details in STAR Methods). At each

time step, each AT unit attempts to generate a simplified, or

compressed, joint representation (hidden representation [HID])

of its current input (IN) and its prior context (CNTX; Figure S1).

The higher-order AT units possess longer intrinsic timescale t,

so their context is less influenced by their input at each moment

(Figure 5C). Also, the proportion of present input that is com-

bined with prior context (and transmitted from a lower AT

unit to a higher AT unit) depends on a reconstruction error (or

‘‘surprise’’), a, which is computed locally within each AT unit

(Figure 5D). In sum, the HAT model performs a nonlinear

(compressive) integration of its context representation with

each input, and this integration is gated by surprise.
HAT Captures Empirical Patterns of
Context Construction and
Forgetting
The HAT model successfully captured the

hierarchical context dependence phenom-

enon (Figure S2G). Moreover, HAT ex-

hibited an important advantage over the

signal gain model and HLI model in that

its ability to integrate information over

time was more selective for previously

learned sequences (STAR Methods; Fig-

ures S2C, S2E, and S2G; model by training

interaction h2 = 0.37). In fact, integration in

the full HAT model was more learning

dependent than any other model tested,

including linear integrator variants and
HAT variants (Figure S5C; Table S1). We analyze the HAT model

further in Supplemental Information (Figures S2 and S5; Table S1).

The HAT model also captured the empirical result that higher-

level regions construct new context more slowly than sensory

regions (delayed ramping in rSIDE:CE or rSICONSTRUCT; Figure 5F).

Moreover, because the HATmodel can prevent the integration of

prior context with new information (using its context gating

mechanism), the influence of prior context could be reduced

at moments of high surprise (Figures 5D, 5E, S2K, and S2L).

Therefore, while the HLI model predicts that regions that slowly

integrate input must also slowly forget prior context (Figure 5H),

the HAT model predicts that higher-level regions need not forget

prior information more slowly (Figure 5I). Thus, HAT provided

predictions most consistent with all of our empirical results

(see also Figure S5C; Table S1).

We have shown that HAT model can account for two new

empirical phenomena: hierarchical variation in the alignment

time during processing of a shared input (Figures 2 and 3) and

the decoupling of alignment-timescales and separation-time-

scales (Figures 4 and 5). But what are the essential computational
Neuron 106, 1–12, May 20, 2020 7



Figure 5. Modeling Context Construction

and Context Forgetting

(A) HLI model schematic. The new state of each unit is

a linearweighted sumof its old state and its new input.

(B) HAT model schematic. Each region maintains a

representation of temporal context, which is com-

bined with new input to form a simplified joint

representation.

(C) An AT unit, in which local context CNTX is updated

via hidden representation HID and current input IN,

modulated by time constant t and ‘‘surprise’’ a. a is

computed via auto-associative error, D, and a scaling

parameter, k.

(D) In HAT, the input to level i is gated by surprise a

from level (i � 1).

(E) HLI simulation of rSIDE:CE predicts longer align-

ment time at higher stages of processing. Error bars

indicate 95% confidence intervals of the mean,

where themean is computed across segmentswithin

a simulation.

(F) HAT simulation of rSIDE:CE predicts longer align-

ment time at higher stages of processing.

(G) Empirical rSIDE:CE results grouped by alignment

time, consistentwith predictionsof bothHLI andHAT.

(H) HLI simulation of rSICD:CE predicts that regions that

construct context slowly will also forget context

slowly.

(I)HATsimulationspredict that the timescaleofcontext

separation (rSICD:CE) neednot be slower in levels of the

model with longer alignment times (rSIDE:CE).

(J) Empirical rSICD:CE results grouped by alignment

time. AT, autoencoder in time; HAT, hierarchical au-

toencoders in time; rSI, intact-scramble ISPC.
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elements required to account for these data? Although it is diffi-

cult to determine necessity in general, we tested an ensemble

of model variants and found that the gating of integration was a

necessary component, within this ensemble, to explain the

data. Moreover, both hierarchical architecture and nonlinearity

of integration increased the sensitivity of all models to prior tem-

poral context (Table S1; Figure S5; STAR Methods).

DISCUSSION

The theory of hierarchical timescales in the cerebral cortex is

influential across cognitive, systems, and clinical neuroscience

(Baldassano et al., 2017; Burt et al., 2018; Chaudhuri et al.,

2015; Chen et al., 2016; Cocchi et al., 2016; Demirtaş et al.,

2019; Fuster, 1997; Hasson et al., 2008, 2015; Himberger et

al., 2018; Kiebel et al., 2008; Murray et al., 2014; Runyan et al.,

2017; Scott et al., 2017; Simony et al., 2016; Wasmuht et al.,

2018; Watanabe et al., 2019; Yeshurun et al., 2017; Zuo et al.,

2020). The intrinsic timescales of brain dynamics are longer in

higher-order areas, as shown by single-unit data in macaques
8 Neuron 106, 1–12, May 20, 2020
(Murray et al., 2014; Ogawa and Komatsu,

2010; Spitmaan et al., 2020), optical imag-

ing in mice (Runyan et al., 2017), and neu-

roimaging and intracranial measures in

humans (He, 2011; Honey et al., 2012; Ste-

phens et al., 2013). The hierarchical gradi-
ents of timescales in brain dynamics are correlated with gradi-

ents of myelin density (Glasser and Van Essen, 2011), gene

transcription (Burt et al., 2018), and anatomical connectivity

(Margulies et al., 2016). Moreover, accounting for regional varia-

tion in timescales improves the prediction of human functional

connectivity (Demirtaş et al., 2019), and individual differences

in timescales predict clinical behavioral symptoms (Watanabe

et al., 2019).

Despite these advances in our understanding of hierarchical

cortical dynamics, our models of the associated information

processing have remained phenomenological. What are the

computations that integrate past and present information within

the hierarchical networks of our brains? Here, we used a

new approach to measure the construction and forgetting of

temporal context in the human brain, and we used these data

to constrain computational models of hierarchical temporal

integration.

Our ISPC analysis revealed a phenomenon of ‘‘hierarchical

context construction’’: when two participants heard the same

sentence preceded by different contexts, their neural responses



Please cite this article in press as: Chien and Honey, Constructing and Forgetting Temporal Context in the Human Cerebral Cortex, Neuron (2020),
https://doi.org/10.1016/j.neuron.2020.02.013
gradually aligned. The responses aligned earliest in early sensory

cortices, followed by secondary cortices, and some higher-order

regions did not align until participants shared 10 s of continuous

common input. This phenomenon of hierarchical context con-

struction suggests the existence of a distributed and multi-scale

representation of prior context, which affects the neural

response to input at eachmoment. The existence of a distributed

context representation is consistent with the finding that recur-

rent neural networks provide a better prediction of visual

pathway responses than feedforward models (Kietzmann et al.,

2019; Shi et al., 2018), especially for the later component of

the neural response (Kar et al., 2019).

Regional variations in hemodynamic peaks (�1–2 s between

sensory and higher-order cortices; Belin et al., 1999; Hand-

werker et al., 2004) cannot account for the 8-s inter-regional vari-

ation we observed in alignment time (Figure S4B). Additionally, if

a hemodynamic delay increased the alignment time in a partic-

ular region, then this should also delay its separation time, lead-

ing to a positive correlation between alignment and separation

times, but this was not observed (Figure S5B).

Regions do not ‘‘forget’’ context at the same rate as they

‘‘construct’’ context (Figures 5E and 5H). This implies the exis-

tence of amechanism for flexibly altering how the past influences

present responses. Linear integrator models lack such flexibility;

the rate of contextual alignment and the rate of separation are

both inversely related to a fixed parameter, r, and so the past

and present information are linearly mixed in the same way

regardless of their content. By contrast, models such as HAT

can flexibly modulate how prior context is integrated with new

input. In HAT, if prior context can be successfully compressed

with new input, then information about context is preserved,

but if prior context and new input are incompatible (leading to

prediction error), then the context is overwritten (Mareschal

and French, 2017). A distributed and surprise-driven ‘‘context

gating’’ mechanism is consistent with evidence for pattern viola-

tions being signaled at multiple levels of cortical processing (Be-

kinschtein et al., 2009; Himberger et al., 2018; Wacongne

et al., 2011).

Context gating is important for clearing out irrelevant prior in-

formation at the boundaries between chunks or events (DuBrow

et al., 2017; Ezzyat and Davachi, 2011; Reynolds et al., 2007).

Baldassano et al. (2017) revealed that almost all stages of

cortical processing are sensitive to event structure, with sensory

regions changing rapidly at the boundaries between shorter

events (e.g., eating a piece of food) and higher-order regions

changing at the boundaries between longer events (e.g., having

an entire meal). However, because the immediate stimulus and

its preceding context always covaried, it was uncertain whether

rapid cortical state changes reflected rapid changes in input,

rapid changes in contextual influence, or both. Here, by sepa-

rately controlling current input and prior context, we demon-

strated that with the sharp event boundaries introduced in our

stimuli, the local context could be gated at those boundaries.

The gating of context may be driven by an immediate prediction

error, as in the HAT model, or via a more diffuse breakdown of

temporal associations (Schapiro et al., 2013)

At a computational level, context gating is widely used in pro-

cessing information sequences and in easing learning. Gated
neural networks can capture long-range temporal dependencies

in sequence learning tasks (Hochreiter and Schmidhuber, 1997).

Combining gated neural networks with structured probabilistic

inference can generate human-like event segmentation of natu-

ral video input (Franklin et al., 2019). Moreover, gating is a

broadly useful process in biological models of working memory,

both for preventing sensory interference with maintained infor-

mation and for flexible updating and integration (Carpenter and

Grossberg, 1987; Heeger andMackey, 2018; O’Reilly and Frank,

2006), and disturbances in gating mechanisms may manifest in

severe cognitive deficits (Braver et al., 1999).

Our computational approach was inspired by the neurocogni-

tive models of Botvinick, (2007) and Kiebel et al. (2008), in which

higher stages of cortical processing learned or controlled

temporal structure at longer timescales. More generally, multi-

scale machine-learning architectures have been proposed for

reducing the complexity of the learning problem at each scale

and for representing multi-scale environments (Chung et al.,

2016; Jaderberg et al., 2019; Mozer, 1992; Mujika et al., 2017;

Quax et al., 2019; Schmidhuber, 1992). In neuroscience, multiple

timescale representations have been proposed for learning value

functions (Sutton, 1995), tracking reward (Bernacchia et al.,

2011), and perceiving and controlling action (Botvinick, 2007;

Paine and Tani, 2005). Moreover, the concept of temporal

‘‘grain’’ is influential in theories of hippocampal organization

(Brunec et al., 2018; Momennejad and Howard, 2018; Poppenk

et al., 2013; Shankar et al., 2016) and cortical organization (Bal-

dassano et al., 2017; Fuster, 1997; Hasson et al., 2015; L€u et al.,

1992; Wacongne et al., 2011). Consistent with hierarchical time-

scale models, we find that more temporally extended represen-

tations are learned in higher stages of cortical processing, where

dynamics change more slowly. These data constrain future

models by revealing the moment-by-moment time course of

context construction in the cerebral cortex and demonstrating

that slowly evolving context representations can be rapidly

updated at event boundaries.

Limitation and Future Directions
For parsimony, we modeled temporal integration using only

within-layer recurrence (i.e., without inter-regional recur-

rence), but there is rich anatomical reciprocity in the brain

(Bastos et al., 2012; Markov et al., 2013; Sporns et al., 2007),

and many models of cortical function emphasize the impor-

tance of feedback and top-down prediction (Friston and Kie-

bel, 2009; Heeger, 2017; Heeger and Mackey, 2018; Kietz-

mann et al., 2019; Rao and Ballard, 1999). It is not clear

which expectation effects in temporal processing rely on

top-down predictions from high-level representations as

opposed to more local recurrent integration or facilitation

(e.g., Ferreira and Chantavarin, 2018). Long-range feedback

is essential for some brain functions (e.g., attentional control

and imagery), and models with (weak) long-range feedback

could account for our data. Still, the local recurrence of the

HAT model was sufficient to account for the integration pro-

cesses we measured during narrative comprehension. Also,

feedforward signaling in the HAT model does depend on the

magnitude of layer-local surprise, which is a feature in com-

mon with predictive coding model.
Neuron 106, 1–12, May 20, 2020 9
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The gating and learning in the HAT model are much less

flexible than in many machine-learning architectures (e.g.,

long-short-term-memory networks [LSTMs] and gated recurrent

units [GRUs]). Gates in neural networks (such as forget gates in

LSTMs or update gates in GRUs) can be triggered by arbitrary

states elsewhere in the network, but the gating in HAT is deter-

mined entirely by a local prediction error. Additionally, learning

in HAT is layer local, rather than end to end. The locality of the

HAT model adds to its biological plausibility, but future work

should test the necessity of more powerful forms of gating and

event learning for capturing human sequence processing.

In future work, we will train HAT variants on linguistic corpora

and use these to generate context-aware encoding models of

the neural response to complex language (e.g., Jain and Huth,

2018). Encoding models quantitatively predict the neural

response at each moment, providing a comparison against the

full richness of the data; at the same time, powerful encoding

models may also be more difficult to mechanistically interpret.

More generally, three important questions for future work will

be (1) whether gating of past context is binary or graded, de-

pending on the magnitude of local prediction error; (2) whether

context gating can occur entirely independently across distinct

levels of processing; and (3) how the context gradient we

observed relates to local neuronal processes on the sub-second

scale (Demirtaş et al., 2019; Goris et al., 2014; Norman-Haignere

et al., 2019; Zhou et al., 2018).

To recap, we showed that brain regions aligned, second by

second, in a hierarchical gradient, when they were exposed to a

common input preceded by distinct contexts. We ruled out expla-

nations of this phenomenon based on stimulus engagement or

fixed-rate integrationprocesses.Ourmodelsanddataprovidecon-

crete constraints for models of brain function in which memory is

inherent to perceptual and cognitive function (Buonomano and

Maass, 2009; Frost et al., 2015; Fuster, 1997; Hasson et al., 2015;

McClelland and Rumelhart, 1985; Shi et al., 2018), and we suggest

general principles, nonlinear integration and gating, that are used in

temporal information processing across the cortical hierarchy.
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Python Python https://www.python.org

HAT Model Custom Software https://github.com/HLab/ContextConstruction
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Christopher J. Honey

(chris.honey@jhu.edu).

Neuroimaging data and stimuli are available at https://openneuro.org/datasets/ds002345 (alias: notthefall).

Python model implementations are available at https://github.com/HLab/ContextConstruction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Forty-three subjects (all native English speakers) were recruited from the Princeton community (20male, 23 female, ages 18-29). Out of

the 43 subjects, 21 subjects participated only in the intact condition, 21 subjects participated only in the scramble condition, and one

subject participated in both conditions. Nine subjects (all native English speakers) were recruited from the Johns Hopkins community

(5 male, 4 female, ages 19-41), and all 9 subjects participated in both intact and scramble conditions. All subjects had normal hearing

and provided informed written consent prior to the start of the study in accordance with experimental procedures approved by the

Princeton University Institutional Review Board (Princeton data) and the Johns Hopkins Medical Institute Institutional Review Board

(Johns Hopkins data). Conditions in which the head motion were > 1 mm or where the signal was corrupted were discarded from

the analysis. Overall, 31 subjects participated in the intact condition, and 31 subjects participated in the scramble condition.

Acquiring and Preprocessing of Neuroimaging Data
Princeton Dataset

Imaging data were acquired from Princeton Neuroscience Institute (Nastase et al.), on a 3T full-body scanner (Siemens Skyra) with a

20-channel head coil using a T2*-weighted echo planar imaging (EPI) pulse sequence (TR 1500 ms, TE 28 ms, flip angle 64�, whole-

brain coverage 27 slices of 4 mm thickness, in-plane resolution 3 by 3 mm, FOV 192 by 192 mm). Preprocessing was performed in

FSL, including slice time correction, motion correction, linear detrending, high-pass filtering (140 s cutoff), coregistration and affine

transformation of the functional volumes to a template brain (MNI). Functional images were resampled to 3mm isotropic voxels for all

analyses.

Johns Hopkins Dataset

Imaging data were acquired on a 3T full-body scanner (Phillips Elition) with a 20-channel head coil using a T2*-weighted echo planar

imaging (EPI) pulse sequence (TR 1500 ms, TE 30 ms, flip angle 70�, whole-brain coverage 28 slices of 3 mm thickness, in-plane

resolution 3 by 3 mm, FOV 240 by 205.7 mm). Preprocessing was performed in FSL, including slice time correction, motion correc-

tion, linear detrending, high-pass filtering (140 s cutoff), and coregistration and affine transformation of the functional volumes to a

template brain (MNI). Functional images were resampled to 3 mm isotropic voxels for all analyses.

METHOD DETAILS

Linear Integrator Models
The linear integrator model was adapted andmodified from the classical temporal context model (TCM). TCM successfully accounts

for human sequence encoding and retrieval behavior, using the concept of a drifting internal context (Howard and Kahana, 2002). The

linear integrator model employs two buffers, each of which is represented as a real-valued vector: the feature buffer which contains

the features of items processed in the sequence stream; and the context buffer (CNTX) composed of a ‘‘temporal context vector.’’ A

weight matrix MFT, which is trained by Hebbian learning mechanism, maps stimulus features to their corresponding representation in
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the context space; this transformation results in an ‘‘input vector,’’ IN. At each time step, the temporal context at the next time point

CNTXðt + 1Þ is updated by adding the mapped input INðtÞto the prior context CNTXðtÞ:
CNTXðt + 1Þ = riCNTXðtÞ+ biINðtÞ (1)

where ri determines the rate of temporal integration, and we choose riz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2i

q
in order to prevent theCNTX vector from changing

its length.

Parallel Linear Integrator Model: PLI
In order to simulate a multi-scale temporal integration process without hierarchical information transmission, we built a parallel linear

integration model (PLI), in which we set the bi parameter in Equation 1 to 0.9, 0.7 and 0.5 for Level 1, Level 2 and Level 3 of the model,

respectively. Thus, in the PLI model, all levels receive the same input IN, but the higher levels of the model will preserve more context

(via their larger r parameters).

Hierarchical Linear Integrator Model: HLI
In order to approximate a sequence of processing stages in a cortical hierarchy, we implemented a hierarchical linear integrator (HLI)

model in which the output of lower stages serves as the input to the next stage of processing. In particular, we stacked the three linear

integrator units (Equation 1), with time constants set just as for the PLI model. However, the input vector IN for stageN+1 of themodel

was taken to be equal to the CNTX vector from stage N.

The Signal Gain Model
We implemented a simple signal gain model whose architecture is similar to the PLI model, but where the signal, X(t), is unaffected by

its previous state. In particular, we set ri = 0 in Equation (1). The signal gain model assumes that (i) scrambling the stimulus decreases

the relative magnitude the stimulus representation and (ii) this effect is larger in higher-order brain regions. Thus, to simulate scram-

bling effects, we decreased the signal-to-noise ratio in the model for higher processing stages or finer scrambling conditions. In

particular, we decreased signal-to-noise ratio by increasing the noise amplitude, s, as follows:

XðtÞ = INðtÞ+ elayerðtÞescrambleðtÞ (2)

where elayerðtÞ and escramble are independent random variables, sampled independently at each time step from a Normal distribution

with 0 mean and standard deviations slayer and sscramble, respectively. Implementing the assumptions of the signal gain model for

simulating the context dependence effect (Figure S2), we set slayer = 0 in Layer 1, slayer = 0:05 in Layer 2, and slayer = 0:09 in Layer

3 to simulate hierarchical temporal integration; and we set sscramble = 0.1, 0.5 or 0.9 for the paragraph-level, sentence-level, and

word-level scrambling conditions.

Hierarchical Autoencoders in Time: HAT Model
Local processing unit: the AT module

Each local processing stage in HAT is an ‘‘autoencoder in time’’ (AT) module. This AT module was adapted from the TRACX2 model

for modeling human statistical learning and sequence learning behavior (Mareschal and French, 2017). Each AT module consists of

three layers. There is an input layer (consisting of a concatenated input unit, IN, and a context unit, CNTX); there is a hidden layer (HID)

which stores the compressed representation of the input layer; and there is an output layer storing the reconstruction of the input layer

from the compressed HID representation (Figure S1). During training, the model will learn good internal (i.e., HID) representations of

the [CNTX, IN] pairings that occur frequently. At the end of training, it should be able to accurately reconstruct ‘‘chunks’’ of input-and-

context from the compressed (i.e., lower-dimensional) internal representation, HID.

In the AT module, information from the world is presented as a stream of symbols, one symbol at a time. For every time step of the

model, the current input symbol, St, from the sensory environment is represented as a 1-by-N one-hot vector, where one scalar value

is 1 and all others are �1. This new input vector is mapped to the IN bank at each time step. The prior context stored in the model is

represented as another 1-by-N vector, which is stored in the CNTX bank.

Each time-step of the model proceeds as follows (please refer to Figure S1):

A. For the very first timestep, the model is initialized with two consecutive stimuli (St-1, St) in the CNTX and IN banks (CNTX1 = S0,

IN1 = S1). For all subsequent timesteps, the CNTX vector is updated according to Equation 7 (below), while INt = St.

B. Activity is propagated forward from the input and context banks (jointly of length 1-by-2N) to the hidden bank (1-by-N) via an

affine transformation followed by a hyperbolic nonlinearity.
HID13N = tanh
�½CNTX; IN�13 2N 3 V2N3N

�
(3)

Thus, a compressive transformation is implemented via the mapping from the input and context (1-by-2N) to the hidden units, HIDt

(1-by-N). A weight matrix V (of size 2N x N) contains the synaptic weights that transform the input layer to the hidden layer in this

compression stage. After the hidden units in the model are updated in this way, another linear-nonlinear transformation is used
e2 Neuron 106, 1–12.e1–e11, May 20, 2020



Please cite this article in press as: Chien and Honey, Constructing and Forgetting Temporal Context in the Human Cerebral Cortex, Neuron (2020),
https://doi.org/10.1016/j.neuron.2020.02.013
to update the output nodes. A second weight matrix, W (of size N x 2N), is then right-multiplied with the hidden layer vector, HIDt,

generating an output bank that is meant to approximately reconstruct the input bank of the model:

½CNTX 0; IN0�13 2N = tanhðHID13N 3 WN3 2NÞ (4)

C. The objective is to make the ‘‘reconstruction’’ in the output banks, ½CNTX0;IN0�, as similar as possible to the actual input ½CNTX;
IN�. Therefore, an auto-associative error D is generated as the absolute difference of the input and output layer (the difference of

the veridical and reconstructed representations):
D= j CNTX 0; IN0½ � � CNTX; IN½ �j (5)

D. The ‘‘surprise’’ parameter, a, is calculated as the maximum value of D, multiplicatively scaled by a parameter k:
a = tanhðk maxðDÞÞ (6)

Here, a is taken to indicate the ‘‘surprise’’ or ‘‘familiarity’’ that the model experiences in response to the combination of the current

context, CNTX, and the current input, IN.When k is larger, the average amount of surprise (magnitude of a) is increased, and INmakes

a larger contribution to the CNTX variable at the next time step.

The CNTX bank is updated as a linear mixture of IN(t) and HID(t), weighted by the surprise parameter, a:

CNTXðt + 1Þ = ð1�aÞHIDðtÞ+a INðtÞ (7)

If a is large, the model has not learned a good HID representation for accurately reconstructing INt and CNTXt, and so the CNTXt+1

bank will be overwritten by the input INt. If a is small, the model has learned a good compressed joint representation, HIDt, and this

compressed representation becomes the context that is used for associating with the next sequential input INt+1.

The steps from A-D complete one iteration of the model, and the cycle continues with step A.

When the model is trained, the transformation matrices (matrix Vmapping from input layer to hidden layer, and matrixWmapping

from hidden to output layer, Figure S1) are adjusted via backpropagation. The loss function is the norm of the auto-associative error

vector D. The backpropagation weight updates are performed incrementally, one training exemplar at a time. Backpropagation is

entirely local to each processing unit (it is not performed end-to-end across the entire network, even when AT units are stacked).

As the model is exposed to the sequential regularities of the input stream, it gradually learns good internal representations of

[CNTX, IN] sequences, and so the auto-associative error gradually decreases. The model can also detect event boundaries in the

input sequence: at event boundaries, the model will be unable to generate an accurate compressed representation of [CNTX, IN],

and will generate a large error a. This large error will then bias the model to overwrite its prior context (from the old event) with its

current input (from the new event).

In summary, the AT module exhibits three important features: (1) prior context is preserved in the CNTX bank; (2) the updating /

overwriting of prior context is gated by an auto-associative error D which is summarized in the ‘‘surprise’’ parameter, a; and (3)

the model minimizes its auto-associative error D by learning the statistical relationships between prior context and new input.

We hypothesize that each stage of processing in the cortical hierarchy exhibits these three functional properties. Therefore, the

HAT model is thus composed of a stack of AT modules, each with these functional properties.

Stacked AT Modules: Hierarchy of Autoencoders

We employed a HAT model with three levels (Figure 5B). Each level is an AT module. The information flow in HAT is globally feedfor-

ward with local feedback: each ATmodule receives recurrent input from its own past state, but there is no backward information flow

from AT module i+1 to AT module i.

Information processing in the HAT architecture possess two key features: first, the context update depends on a local timescale

and is gated by surprise; second, the information flow between levels is gated by surprise.

Context update via timescale and surprise:

Figure 5C illustrates the structure of each AT module in HAT. As described above, the AT module transforms the input and context

[CNTX, IN] into a compressed internal representation, HID, and the model then attempts to reconstruct the [CNTX, IN] pairing from

this lower-dimensional internal representation. The local context in each level unit is updated by a combination of HID and IN, modu-

lated by a level-specific time constant t and local surprise a, respectively (Figure 5C). If t is larger than a, the model tends to preserve

more context from HID; if a is larger than t, the model tends to overwrite the context using the current input IN, as the equation

illustrates:

CNTXiðt + 1Þ = ti
ti +ai

3HIDiðtÞ+ ai

ti +ai

3 INiðtÞ (8)

Note that in the full HAT model implementation reported in the main text, we employed Equation 8 rather than the simpler Equation 7

which describes a single AT module.
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To capture the assumption that higher-level regions process information over longer timescales while lower-level regions process

information over shorter timescales, we set t equal to 0.8 for the top level, 0.5 for the middle level and 0.2 for the bottom level of the

3-level HAT model. Thus, relative to the lower levels of the model, the CNTX variable in higher levels of the model will preserve more

information about the context in prior timesteps. Of course, in addition to this fixed parameter twhich determines howmuch context

is typically preserved in each level, the context updating is also influenced by the surprise parameter, a, which can transiently

increase the influence of the input IN the update of the CNTX variables.

Information flow in HAT is gated by surprise

We designed the feedforward information flow in HAT based on the notion that temporal integration is a distributed process,

assuming that higher-level circuit perform a similar operation to lower-level circuits (i.e., linking input to prior context) but the higher

levels may learn to associate chunks instead of single elements in the sequence. Our goal was that, for a multi-level compound like

the word airplane, the first level of themodel might learn to chunk the phonemeswithin air and plane, and the second level might learn

to chunk air and plane to represent the larger word airplane. Thus, the input to the higher levels of the HAT model should be the com-

pressed (chunked) representations from the lower levels. However, this process should also be modulated by surprise, as higher

levels should only accept ‘‘successful’’ chunks from the layer below.

Therefore, the input to the higher levels of HAT is a linear mixture of HID and IN from the level below, modulated by the surprise a:

INi + 1ðtÞ = ð1�aiÞ3HIDiðtÞ+ai 3 INiðtÞ (9)

If the lower-level unit detects a large surprise (if a is near 1), more of the lower-level’s input would be passed on as input to the upper

level. On the other hand, if the lower-level unit detects small surprise (if a is near 0), then the ‘‘temporal chunk’’ representation from the

lower level would be transmitted as input to the upper level (Figure 5D).

Nonlinearity

In the HAT model, the representation of a word is a nonlinear combination of the letters, which depends on those letters having been

seen before in similar sequences. This is in contrast to the HLI model, where the representation is simply an exponentially weighted

sum of each item; the relationship of new input and prior context (e.g., whether they are related or unrelated) does not affect the

magnitude or form of the context update in HLI.

HAT variants
Parallel AT model

To examine whether a hierarchical stage-by-stage processing architecture is required to reproduce the empirical phenomena

reported here, we implemented a Parallel AT (PAT) model which consists of three AT units with different t parameters (i.e., 0, 0.4

and 0.8 for level 1, 2 and 3, analogous to the hierarchical models). In contrast to HAT, each AT unit in the PAT model directly receives

the same sequence of inputs from the environment. The inputs are processed in parallel, without any interaction between the

AT units.

HAT variants with limited gating

To examinewhether context gating is a necessarymechanism for the HATmodel to be able to reproduce the empirical phenomena of

hierarchical temporal integration, we generated a set of HAT models with variations in their gating mechanisms. Specifically, we

turned off the surprise-modulated context gatingmechanism, either locally (i.e., the context gating within each ATmodule) or globally

(i.e., the gating of transmission between levels of the model), or we turned off all gating effects.

HAT-Local Gating: HAT-LG

HAT-LG is a HATmodel with only local gating (within each ATmodule) but no transmission gating mechanism (between ATmodules).

Thus, the input to the higher levels of the model is simply a copy of the HID from the lower level, regardless of the a parameter (as in

Equation 10).

INi + 1ðtÞ = HIDiðtÞ (10)

However, the within-level CNTX update is still gated by surprise (Equation 8).

HAT-Transmission Gating: HAT-TG

HAT-TG is a HATmodel with only transmission gating but no local gatingmechanism. That is, the local context is updated with a fixed

influence of the input, which depends only on the level-specific t (Equation 2) without the modulation of surprise ⍺.

CNTXiðt + 1Þ = ti 3HIDiðtÞ+ ð1� tiÞ3 INiðtÞ (11)

However, the between-level transmission is still gated by surprise a from level below, as in Equation 9.

HAT-No Gating: HAT-NG

HAT-No Gating or HAT-NG, is a HAT model with neither local nor transmission gating mechanism. There is no surprise-modulated

gating mechanism: instead, the local context is updated with a fixed influence from the input, which depends only on the level-spe-

cific t (Equation 11). Moreover, there is no transmission gating in this model: the input of the upper level is a copy of the HID vector

from the lower level, as described in Equation 10).
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Model Simulations and Predictions
Simulations of Hierarchical Context Dependence

To test for the phenomenon of hierarchical context dependence in each model (Figure 1D), we employed a strategy analogous to the

original human experiments. We presented the model with intact and scrambled versions of a time-varying stream of input. We then

measured the context effects by comparing the model responses (internal representations) of the same input preceded by different

contexts.

As described in the main text, for a model to account for the hierarchy of context dependence it should capture two key

phenomena:

(P1) lower processing stages of the model should be insensitive to context change (analogous to sensory cortical regions, Fig-

ure 1D, left bars);

(P2) increasingly higher processing stages of the model should be increasingly sensitive to temporal context further in the past

(analogous to higher stages of cortical processing, Figure 1D, right bars).

We trained and tested six different models, including the signal gain model, the parallel linear integrator model (PLI), the HLI model,

the parallel autoencoders in time model (PAT), as well as the HAT model, and the no-gating variant of the HAT model. In addition, we

tested (for each model) whether the context dependence effect was selective for previously trained sequences. In other words, we

measured the ‘‘learning effect’’ (Table S1, see below).

Model Training Procedure

To examine whether each of our models exhibit a hierarchy of context dependence, we simulated an approximation of the experi-

mental paradigm in Lerner et al. (2011). We trained the models with a 30-element long ‘‘intact’’ sequence. The intact sequence was

presented 600 times. Each element of the input was encoded as a one-hot vector of length 30. We also added uniformly distributed

noise to each scalar value of each input sequence. The noise samples were independently drawn from a uniform distribution on [-0.3,

0.3]. The purpose of the noise was to improve the model’s generalizability, and to approximate the fact that real-world sequence

learning occurs in the presence of noise. To prevent the model from learning a spurious relationship between the end of the intact

sequence and the beginning of the next presentation of the intact sequence, we added ‘‘random filler’’ sequences (length = 5 sym-

bols) between intact segments. Each of the random filler symbols was an independently generated random vector, with elements

uniformly distributed in the range [-1, 1] for the HAT model and its variants, and in the range [0,1] for other models. (Figure S2A,

depicted as an ‘x’ between intact segments).

Testing Models for Context Dependence

After training, the weights in each model were fixed; no further weight change was allowed during test. During testing, we then

compared the models’ representations of intact and scrambled sequences. The three scrambled sequences were designed to

preserve the intact structure at three different scales: the long-scale (6 element subsequences were preserved), medium-scale

(3 element subsequences were preserved) and fine-scale (2 element subsequences were preserved). Each testing ensemble

(e.g., ‘‘medium scale scramble’’) was composed of 10 ‘‘test sequences.’’ Each test sequence was a length-30 sequence which

was a randomly scrambled version of the intact sequence. All test sequences within an ensemble were scrambled at the same

scale, but with different permutations. Therefore, each test sequence exhibited preserved structure on the relevant scale. As

during training, fillers were again inserted between each of the 10 sequences that composed a testing ensemble (Figure S2A,

the ‘x’ between the length-30 test sequences). We then defined the ‘‘context dependence’’ (CD) effect as the difference in

intact-scramble correlation across the long-scramble and short-scramble conditions: CD = corr(intact, LSS) – corr(intact,

FSS) (see Figure S2).

Testing the Effect of Learning on Context Dependence

To assess whether models captured the temporal structure of the intact sequences due to sequence-specific learning (rather than

due to an intrinsic ability to maintain prior context of any kind of sequence), we additionally trained models with random sequences,

that were generated by shuffling the intact structured sequences. We then tested these shuffle-trained models with the same

(non-random) testing sequences that were used to test the normal structure-trained models. In this way, we could compare the

CD effects for the models trained with structured sequences against the CD effect for models trained with randomly shuffled

sequences (Figure S5C). We defined the ‘‘learning effect’’ as the difference in CD values between a model trained with structured

sequences and the same model trained with shuffled sequences.

Simulations of Context Construction and Forgetting

We set out tomodel the context construction results (Figures 2 and 3) using the signal gainmodel, the linear integratormodels and the

HATmodel and its variants. The training sequences and procedure were the same as for modeling of the Lerner et al. (2011) data. For

testing, we only simulated the models with the intact and the paragraph-level scrambled sequences, as we took these levels to

correspond to the intact and scramble conditions in the empirical data.

Timescales of alignment and separation were analyzed in the model in an analogous manner to how they were assessed in

the empirical data. For clarity, we introduce notation that discriminates the cross-group similarity measure, rSI, as it is used in

the alignment and separation analyses. Specifically, we employ rSICONSTRUCT = rSIDE:CE for the rSI in the context alignment

(‘‘construction’’) analysis, and rSIFORGET = rSICD:CE for the rSI in the context separation (‘‘forgetting’’) analysis. The context
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alignment curve, rSIDE:CE, was estimated by computing ISPC on the internal representations of each model. Internal represen-

tations were measured when the same six-element segments were presented as input, preceded by different segments in the

intact and scramble group. Similarly, for the separation curve, rSICD:CE, the correlations were measured in the model simulation

by performing ISPC on the hidden representations across two different ‘‘groups’’ of model runs.

To simulate different ‘‘participants,’’ we added noise to the inputs of each model, so that there would be some variation across

runs in the generated responses. In particular, for the HAT model we added independent random sample from a Normal

distribution � N ð0;0:5Þ and for the HLI model we added independent random noise � N ð0; 2Þ (the HLI model noise was larger,

in order to generate more variance between ‘‘subjects’’ and better approximate the empirical data pattern). These noise samples

were added independently to each element of the input vector on each timestep. In this way, by running 200 simulations, each

with unique noise structure, we generated 100 simulated ‘‘subjects’’ for the intact group and 100 simulated "subjects" for the scram-

bled group.

Each model run was treated in the same way as the neural response of a single participant. Thus, we measured the responses

across two groups of model runs, where responses were correlated across different segments (e.g., segment D in Group 1 and

segment E in Group 2) which were preceded by the same segment (e.g., segment C was the preceding segment in both Group 1

and Group 2).

To compare the patterns of model predictions against empirical data, we also approximated the effect of ‘‘hemodynamics’’ in our

model, by convolving the time course of each model’s internal representation with a temporal smoothing function. This convolution

was performed only on themodel output, and did not affect the internal dynamics of the simulation. The temporal smoothing function

in themodel consisted of two gamma functions to approximate the hemodynamic response (HRF). The probability density function of

the gamma function is:

fðx; aÞ = xa�1expð�xÞ
GðaÞ

Here we set a = 2.5 for one gamma function to set the peak value, and a = 2 for the other gamma function for the undershoot value of

our HRF.

Analysis of Linear Integrators
We analytically confirmed that the ‘‘alignment time’’ and the ‘‘separation time’’ of a linear integrator model are closely related. In

particular, in limiting cases of simple linear integrators, the alignment time and separation are expected to be identical.

We consider two integrators, A and B, each of which is treated as amodel of one participant. We will measure the correlation of the

state of these integrators as a function of time.

At each time, t, the state of each integrator is an n-dimensional vector:

AiðtÞ = scalar value of voxel i in participant A at time t
BiðtÞ = scalar value of voxel i in participant B at time t

Then we can define the vector of initial states of each integrator:

Að0Þ = initial state of vector A
Bð0Þ = initial state of vector B

and we can define the vector of time-varying input that each integrator receives:

IAðtÞ = input to A at time t
IBðtÞ = input to B at time t

The alignment time is the time for two integrators to produce a similar response after receiving a series of identical inputs.

Thus, to measure the alignment time, we assume that Að0Þ and Bð0Þ are random initial starting points

(each Aið0Þ � Nð0; 1Þ; each Bið0Þ � Nð0;1ÞÞ but the input is identical, so that IAðtÞ= IBðtÞ for all t. Under these conditions, we write

A tð Þ=Aalign tð Þ;B tð Þ=Balign tð Þ;and we define the ‘‘alignment similarity’’ using the Pearson correlation:

ralignðtÞ = corr
�
AalignðtÞ;BalignðtÞ

�
Suppose the alignment time is the smallest t for which rALIGNðtÞ>K where 0<K < 1 is an arbitrary threshold.

The separation time is the time for two integrators to produce a dissimilar response after receiving independent input. Thus, to

measure the separation time, we assume that Að0Þ=Bð0Þ while the inputs, IAðtÞ and IBðtÞ, are statistically independent draws
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fromN(0,1). Under these conditions, we write AðtÞ=AsepðtÞ;BðtÞ=BsepðtÞ;and we now define the separation similarity using the Pear-

son correlation:

rsepðtÞ = corrðAsepðtÞ;BsepðtÞÞ< 1� K

Suppose that the separation time is the smallest t for which rSEPðtÞ< 1� K where 0<K < 1 is the same threshold as chosen for the

alignment time.

To show that alignment times and separation times are tightly related, we will show that

ralignðtÞ + rsepðtÞ= 1

so that ralign must increase at the same rate as rsep decreases. Thus, for any choice of threshold, K, the time to align and the time to

separate are equal.

For the update of our discrete-time linear integrator, we take:

Ai t + 1ð Þ= rAi tð Þ+ lIA;i tð Þ
where l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2Þp
.

By definition,

Ai 1ð Þ= rAi 0ð Þ+ lIA;i 0ð Þ
and

Aið2Þ = rAð1Þ + lIA;ið1Þ= r½rAð0Þ + lIAð0Þ� + lIA;ið1Þ= r2Að0Þ +
X1

m=0

r1�mlIA;iðmÞ

We can iterate this equation to derive the form of AiðtÞ :

AiðtÞ = rtAið0Þ+
Xt�1

m= 0

rt�1�mlIA;iðmÞ

and similarly

BiðtÞ = rtBið0Þ+
Xt�1

m=0

rt�1�mlIB;iðmÞ

We assume that each of the scalar values within the inputs, IA;i and IB;i, are independent draws from a Normal distribution with zero

mean and unit variance. In conjunction with the choice of l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ

p
, which scales the relative amplitudes of prior states of the

integrator and its new input, this guarantees that E½AiðtÞ�=E½BiðtÞ�= 0 and VAR½AiðtÞ�= VAR½BiðtÞ�= 1:

Now suppose we consider the expression for the sample Pearson product-moment correlation between AðtÞ and BðtÞ. This is a

correlation computed across voxels (i.e., the vector AðtÞ correlated with the vector BðtÞ). If we assume that each vector is composed

of n voxels, then the correlation takes the following form:

rABðtÞ = corrðAðtÞ;BðtÞÞ=
Pn

i = 1AiðtÞBiðtÞ � n mAðtÞmBðtÞ
ðn� 1ÞsAðtÞsBðtÞ

where mAðtÞ and mBðtÞ are the sample means of the vectors, and sAðtÞand sBðtÞ are their sample standard deviations.

By construction, the individual linear integrator units maintain a mean value of zero, and so mAðtÞ;mBðtÞ/0 as n/N. Moreover,

because of the choice l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ

p
, which preserves the variance of the individual elements of the vector, the sample standard de-

viations, sAðtÞ and sBðtÞ are approximately constant over time.

Therefore, the variation in rAB over time arises from changes in the inner product of the vectors describing each integrator:

Xn

i = 1

Ai tð ÞBi tð Þ=
Xn

i = 1

rtAi 0ð Þ+
Xt�1

m= 0

rt�1�mlIA;i mð Þ
" #

rtBi 0ð Þ+
Xt�1

m= 0

rt�1�mlIB;i mð Þ
" #

=
Xn

i = 1

rtAi 0ð ÞrtBi 0ð Þ+
Xt�1

m= 0

rt�1�mlIA;i mð ÞrtBi 0ð Þ+
Xt�1

m= 0

rt�1�mlIB;i mð ÞrtAi 0ð Þ+
Xt�1

m= 0

rt�1�mlIB;i mð Þ
Xt�1

m= 0

rt�1�mlIA;i mð Þ
" #

y
Xn

i = 1

r2tAi 0ð ÞBi 0ð Þ+
Xt�1

m= 0

rt�1�mlIB;i mð Þ
Xt�1

m= 0

rt�1�mlIA;i mð Þ
" #

This last simplification occurs because the input to the integrators (IA and IB) are zero-mean vectors that are statistically independent

of the initial states (A(0) and B(0)); thus the cross-terms that multiply these factors have an expectation of zero, and their contribution

to rAB will tend to zero as n/N.
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Now, if we consider the formula for
Pn
i = 1

AiðtÞBiðtÞ above, the first term is a sum over products of the initial states (A(0) andB(0)) of the

two integrators, while the second term is a sum over products of the inputs to the integrators (IA and IB). Thus, the variation in the

correlation over time can be decomposed into two terms: one term is a contribution from the decayingmemory of the initial conditions

(Að0Þ and Bð0Þ) while the other term is the contribution from the correlation in the input (IA and IB) to each linear integrator.

Finally, we can show that the quantity ralignðtÞmeasures the time-varying contribution from shared input, while the quantity rsepðtÞ
measures the time-varying contribution from the shared initial conditions.

Recall that when we are measuring ralignðtÞ, we assume that initial states of the two integrators are statistically independent but the

inputs are identical. In this case E½ðrtAið0ÞrtBið0Þ�= 0, so that:

ralignðtÞy
Xn

i = 1

"Xt�1

m= 0

rt�1�mlIB;iðmÞ
Xt�1

m= 0

rt�mlIA;iðmÞ
#,

K

where K = ðn�1ÞsAðtÞsBðtÞ summarizes the length of the vector and the sample standard deviations, which are essentially constant

over time and invariant to the initial conditions.

On the other hand, recall that whenwe aremeasuring rSEPðtÞ, the initial states of the two integrators are identical, but their inputs are

statistically independent. In this case, E½ Pt
m= 1

rt�mlIB;iðmÞ Pt
m=1

rt�mlIA;iðmÞÞ�= 0, so that

rsepðtÞy
Xn

i =1

r2tAið0ÞBið0Þ
,

K

where again K = ðn � 1ÞsAðtÞsBðtÞ.
Now suppose we have two linear integrators, and we set them to an identical initial state, and we provide them with identical input.

In this case, both the initial state and the input are identical, and thus the correlation of the states of these two linear integrators will

remain ridenticalðtÞ= 1 for all values of t. But recall that we have shown that the correlation between the states of two linear integrators at

time t, can be expressed as a sum of two values: the correlation that would have been measured if they had independent initial

conditions (and identical input) and the correlation that would have been measured if they had identical initial conditions (and inde-

pendent input). Thus, we can decompose the ‘‘identical’’ correlation into these two parts, writing:

ridenticalðtÞ = ralignðtÞ+ rsepðtÞ= 1

This identity implies that a linear integrator that generates a rapidly increasing alignment (with a short alignment time) must equally

generate a rapidly decreasing separation (with an equally short separation time).

Empirical Measurements of Context Dependence
Temporal Alignment of Neuroimaging Data

We time-shifted the neural response in each participant so as to minimize inter-subject variation in the hemodynamic response

(Handwerker et al., 2004). First, we upsampled all BOLD time courses to a 50 Hz timebase. Second, we aligned the neural response

time courses across subjects by shifting each subject to maximize the temporal cross-correlation with the mean time course of all

other subjects within the A1 region. This shifting process was performed for each subject, iterating until no further shifting occurred.

Having mitigated hemodynamic differences in this way, it was then necessary to align all participants to the timebase of the auditory

narrative stimulus. A reference time course was generated by convolving the acoustic envelope of the auditory stimulus with a he-

modynamic response function. The mean (across subjects) response time course in A1 was then shifted to maximize the correlation

with this stimulus reference time course. These operations were performed separately for data from the intact condition and the

scramble condition. Finally, we confirmed that the procedure was accurate by showing that the unscrambling procedure was accu-

rate within A1. First, we checked that the intact and scrambled data exhibited the same ramping BOLD time-course in A1, locked to

the onset of each sentence within each stimulus. Second, we confirmed that the unscrambled data (dependent on accurate segment

onset timing) correlatedwith the auditory amplitude of the intact stimulus: r (intact neural response in A1, intact audio stimulus) = 0.53;

r (unscrambled neural response in A1, intact audio stimulus) = 0.50.

We next partitioned the neural responses into distinct segments, based on the segment onset timing within the intact stimulus

and scrambled stimulus, and unscrambled the data based on which segments corresponded. Following this permutation, we

then evaluated rSI in the primary auditory cortex (A1) and the right temporal parietal junction (rTPJ) to ensure that the unscrambling

procedure was successful.

Inter-subject pattern correlation (ISPC)

The ISPC analysis quantifies the similarity of spatial patterns of neural responses at a moment in time. We quantify the similarity by

correlating the pattern of voxel activation at each time point (Figure 2A). Similar to the inter-subject correlation (ISC) analysis which

provides a measure of the temporal reliability of the responses to complex stimuli (Hasson et al., 2004), the ISPC analysis provides a

measure of the spatial reliability of the response to the stimuli at each time point (see also Zuo et al., 2020). The ISPC method differs
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from conventional fMRI data analysis methods in that it circumvents the need to specify a model for the neuronal processes in any

given brain region during story listening. Instead, the ISPC method uses one subject’s neural responses to a stimulus as a model to

predict the neural responses within other subjects.

Using ISPC, we quantified the changes in the neural responses over time within each segment of the auditory stimulus. We

computed similarity within the group of subjects listening to the intact story (the intact condition, rII), similarity within the group

listening to the scrambled story (the scramble condition, rSS), and similarity across the intact and scrambled groups (rSI) (Figure 2B).

The rII and rSS analyses provide an indication of how reliably a given region is responding to the stimulus (Intact or Scrambled) at a

particular moment. Conversely, the rSI analysis across the two groups indicates the similarity across two groups, which may be

experiencing the same input (but different contexts) or experiencing different input (but with the same prior context). For example,

the main analysis (Figure 2C) examines the neural similarity across intact and scrambled groups when subjects process the same

segments preceded by different contexts: we correlated responses to segment E, which was preceded by segment D in the intact

group but preceded by segment C in the scrambled group). That is, when the context is disrupted in the scramble group, wemeasure

how subjects re-construct the temporal context in order to align with the intact group.

The pattern-correlation method used here provides several practical advantages for measuring integration timescales. First, we

showed that it can be used to measure timescales of context forgetting in addition to context construction. Second, the method

is efficient: if reference data exists for the responses to the intact stimulus, then an rSI curve can be computed in a single participant

using one presentation of one scrambled stimulus. Third, the rSI curve provides a profile of how context influence varies over time.

We focused on alignment times in this study, but future studies could use the asymptote and slope of the rSI curve to constrain quan-

titative models of temporal integration.

Measuring similarity within and between groups

To calculate rII, we segmented the neural response according to the segments used to make the scrambled stimuli. For each

segment, we analyzed the neural response of the first 16 s following segment onset. We performed ISPC by correlating the neural

response pattern of one subject in the intact group to the average neural responses of the remaining subjects in the intact group

for each time point. This calculation of spatial patterns was performed separately for each time point in each segment. We generated

an ISPC time course within each segment for each subject. The rII was calculated by averaging the ISPC time course across all seg-

ments and subjects. The rSS was calculated using the same method, within the scramble group. To calculate rSI, for each long

segment, we performed ISPC by correlating the neural response pattern of one subject in the scramble group to the average neural

response of all subjects in the intact group. The rSI time-course was calculated by averaging the ISPC time-course across all seg-

ments and all subjects.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used a combination of resampling methods and parametric tests to statistically evaluate all empirical and modeling results, as

described below under each heading.

Quantifying context dependence in models
We measured the similarity of the representations generated by different levels of the model as a function of the amount of shared

context. To quantify similarity, we correlated the hidden representation that was generated when the models were processing the

intact and the scrambled sequences (Figure S2A). Specifically, we correlated the hidden representations of the last elements of

the subsequences (e.g., the ‘‘r’’ in ‘‘qr’’) in each scrambled sequence with the hidden representations of the same elements (the

‘‘r’’ in ‘‘qr’’) in the intact sequences (see red symbols in Figure S2A). In this way, we measured how the representation of the identical

stimulus was altered as a function of the context change.

We then defined the ‘‘context dependence’’ (CD) effect as the difference in intact-scramble correlation across the long-scramble

and short-scramble conditions: CD = corr(intact, LSS) – corr(intact, FSS) (see Figure S2). To compare the CD in two models, we

computed the distribution of CD values for each network and computed: (i) a parametric t test of the difference in means and (ii)

Cohen’s d to quantify the separation of the distributions.

Training the HAT model on shuffled sequences produced a large and highly statistically significant decrease in sensitivity to tem-

poral context. Comparing the original HAT model against the shuffle-trained variant, we obtained a large and highly statistically sig-

nificant difference in context dependence: mean CD original = 0.50, mean CD shuffle-trained = 0.10; Cohen’s d = 5.42; t(98) = 27.1,

p < 0.001. The results for other models are shown in Figure S5C.

Validating neural response reliability
To examine whether there is a hierarchy of context construction in the cerebral cortex, we conducted the ISPC analysis for 400 ROIs

across the whole brain, based on the parcellation of the cerebral cortex provided by (Schaefer et al., 2018). To determine the ROIs

that showed reliable responses when people were processing the naturalistic narratives, we first identified brain regions that re-

sponded somewhat reliably to both the intact and scrambled stimuli. In particular, we chose an arbitrary threshold of rSS = 0.06which

produced a set of ROIs which are visually similar to the set of narrative-responsive regions reported by (Lerner et al., 2011).
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We further validated the threshold by conducting a permutation test of the rII in primary auditory cortex, in which we compared the

true rII with the ‘‘shuffled rII’’ calculated after shuffling the order of the segments. First, we generated 10,000 shuffled orders of the

segments. For each of these shuffled orders, we reordered the neural responses of one subject according to the shuffled order, and

calculated the rII between the shuffled neural response of this one subject with the mean neural responses of the rest of the subjects

in the intact group (For the other subjects, the order was preserved). We repeated this procedure to all the 31 subjects in the intact

group using the same 10,000 shuffled orders, and calculated the average rII for each shuffled order, generating a null distribution of

the rII. We found that 0.06 is significantly higher than the null distribution (p < 0.0001, Figure S3A), confirming that this is a valid

threshold for determining ROIs showing reliable responses when people are processing naturalistic stimuli.

Using this validation criterion, we identified 83 ROIs out of 400 ROIs for further analyses. The raw curves of rII and rSS showed that

the 83 ROIs showed reliable responses from the beginning to the end of the segments (Figure 2E), further indicating that rSS = 0.06 is

a valid threshold to identify ROIs which respond reliably when people processed the intact and the scrambled stimuli.

Quantifying alignment time
To quantify the alignment time as an index for context construction of different regions, we fit the rSIDE:CE curves with the logistic

function

y =
a

1+ e�bðt�cÞ +d

by using least-square regression tominimize error. Here, y is the dependent variable which is the rSI value and t is the time in seconds

since the segment onset. The parameter a is the curve’s maximum value, b is the steepness of the curve, c is the time when the

logistic curve reaches its half maximum value, and d is an offset term to adjust the initial value of the curve. Here we used the param-

eter c as the alignment time measurement for each ROI. Among the 83 ROIs which exhibited reliable responses to the scrambled

stimuli, 4 ROIs were excluded because the logistic fitting procedure did not reliably converge; the rSI curves for these ROIs are shown

in (Figure S3B).

We used a cross-validation approach to confirm that the logistic function is a good model for fitting rSI curves and evaluating the

alignment time. In particular, we tested whether the logistic model fit (and associated alignment time) in a given ROI will generalize to

predict similar values when the same fitting is preserved for that ROI in a separate group of participants. In each of the 100 folds of the

cross-validation procedure, we randomly split the data into two subsets of participants (N = 15 and N = 16). We then used the training

group (N = 16) to estimate model parameters and the second half (N = 15) as a test group for measuring out-of-sample error. In the

in-sample data, we measured (i) the shape of the rSI curve; and (ii) the best-fit parameters for the logistic fit to that curve. We then

measured the shape of the rSI curve in the out-of-sample data. In order to compute test error, we measured the mean squared error

(MSE) in two ways. First, we computed MSE-data: we measured the error when predicting the out-of-sample rSI curve using the

in-sample rSI curve. Second, we computed MSE-logistic: we measured the error when predicting the out-of-sample rSI curve

using the logistic fit to the in-sample curve. After averaging MSE-data and MSE-logistic across all folds, we compared MSE-data

and MSE-logistic for each ROI (Figure S3C). If the MSE for the logistic fit is comparable to that for the rSI curve itself, then we

concluded that the logistic fit accurately captures the shape of the rSI curve in that ROI. As shown in the figure, the logistic model

was not only comparable to the in-sample data in predicting the out-of-sample data, it was often even better, producing a more ac-

curate prediction than the in-sample curve. This cross-validation performance suggests that logistic model (which correctly assumes

a ramping profile) is a valid model for approximating the rSI curve and quantifying the alignment time of the data. The quality of the

logistic model can also be confirmed by visually inspecting the curve fits (Figure S4A).

Having confirmed that logistic curves provide a good overall model fit, we used bootstrapping to estimate the uncertainty in the

alignment time estimates derived from the logistic fits. In each ROI, the alignment timewas derived from the c parameter in the logistic

equation above. For each of 1,000 bootstrap iterations, we resampled 31 subjects with replacement from the subject pool, and then

recomputed the rSI curve, the logistic fit, and the c parameters. This generated a distribution of 1,000 c values for each ROI. We then

excluded ROIs in which fewer than 90% of the bootstrap values were within 3 s of the originally estimated c parameter. Using this

method, we identified and excluded 9 ROIs out of the 79 ROIs. These ROIs weremostly higher-order regions whose ISPC curves had

lower values and lower signal-to-noise compared to other ROIs (Figure S3D). Thus, 70 ROIs proceeded to context construction anal-

ysis. Finally, the alignment time of the individual ROIs were mapped from MNI space to a cortical space, and visualized on a cortical

surface map using Workbench Viewer (https://www.humanconnectome.org/software/connectome-workbench).

Quantifying separation time
To test the predictions of the HAT and HLI models regarding context forgetting, we performed another ISPC analysis. We operation-

alized context forgetting by measuring the separation rate of neural dynamics initialized from a common context. In particular, we

examined the similarity of neural responses over time across two groups of ‘‘subjects’’ (i.e., model simulations) processing the

different segments preceded by the same context. For example, in the rSIFORGET ( = rSICD:CE) analysis, we correlated the responses

between segment D in the intact group and segment E in the scramble group, when both were preceded by segment C (Figure 4B).

The procedure for calculating procedure of rSIFORGET ( = rSICD:CE) was directly analogous to the calculation of rSICONSTRUCT (as

illustrated in Figure 2) except that we paired non-matching segments with matching contexts (CD:CE), rather than pairing matching
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segments with non-matching contexts (DE:CE). To quantify the rate of context forgetting (i.e., the ‘‘separation time’’) we used a

procedure analogous to that used for measuring alignment times. We fit the rSIFORGET curves with the logistic function, and again

used the half-maximum value (the c parameter) as our estimate of separation time. The measurement of ISPC to generate rSIFORGET

curves wasmore variable here than for the rSICONSTRUCT analysis, because here wemeasured the correlation of responses to distinct

stimuli, rather than the correlation to identical stimuli. Therefore, it was only possible to successfully fit the rSIFORGET curves in 60 of

the 70 ROIs from the previous procedure (Figures 4C and 4D), and the ROIs which could not be well-fit were: LH_SomMotB_Aud_8;

LH_TempPar_3; LH_TempPar_4; LH_TempPar_6; RH_SomMotB_S2_2; RH_SomMotB_S2_6; RH_SomMotB_S2_10; RH_ContA_

PFCl_2; RH_TempPar_2; RH_TempPar_4.

The rate of separation in the HATmodel was more variable across simulation runs than for the HLI model. The variability in the HAT

model arises because its performance depends on a nonlinear learning process: the network weight initialization and the specific

randomization order for the scrambled stimulus affect the hidden representations that are learned across different runs, and this in-

duces variability in the strength of the gating at sentence boundaries. We plot a representative rSIFORGET simulation in Figure 5I, but

variability across model runs can be observed in the simulations shown in Figure S5B. Despite this variability, the HAT model was

consistently different from the HLI model, which always predicted that regions with slower changes in rSICONSTRUCT would also

exhibit slower changes in rSIFORGET (Figures 5H and S5B).

Simulating alignment time and separation time
To obtain a quantitative comparison of model performance and empirical results, we examined the relationship between the align-

ment time and separation time measured from the ISPC curves generated by each model. For each model we simulated, we

computed rSICONSTRUCT and an rSIFORGET curves at each level of the model. We then fit these curves with logistic function to get

the alignment time and separation time (i.e., the half maximum value of the logistic curve). We repeated this procedure for the

PLI, HLI, HAT-NG and HAT model, respectively, until we obtained at least 50 data points for each model (in a small portion of sim-

ulations, the curves could not be well-fit by the logistic function, and the simulation was repeated). To summarize the predictions of

each model, we plotted the pairs of alignment-separation values across all three levels and all simulations (Figure S5B). Finally, we

calculated the Pearson correlation between the alignment time and separation times for each model, as well as associated para-

metric p values.

DATA AND CODE AVAILABILITY

The neuroimaging datasets used and generated during this study are available at Open Neuro (https://openneuro.org/datasets/

ds002345) under the ‘‘notthefall’’ alias. Python model implementations are available at https://github.com/HLab/ContextConstruction.
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Figure S1. Architecture and updating of a local autoencoder-in-time (AT) unit. Related to  STAR Methods  
and Figure 5. (A) At time t, the input layer of the AT unit is a 1-by-2N vector which contains both the 
present information St in the IN bank and the past information St-1 in the CNTX bank. (B) The concatenated 
vector [CNTX, IN] is multiplied by weight matrix V to form a low-dimensional HID representation (a 1-by-
N vector). This HID vector is left-multiplied by a weight matrix W to generate an output layer [CNTX¢, IN¢] 
which is the reconstruction of input [CNTX, IN]. (C) The reconstruction error, Δ, or “surprise”, is calculated 
as the absolute value of [CNTX¢, IN¢]- [CNTX, IN]. (D) The gating parameter, α, is calculated as 
tanh(k*max(Δ)). Here, the parameter k scales how much the contribution of IN to CNTX is increased by 
surprise. The CNTX vector is updated as a linear mixture of the IN vector and HID vector, with the linear 
proportions modulated by α and a level-specific time constant τ. After CNTX is updated, the cycle is 
complete, and the unit is ready to receive input at time (t+1). IN = input unit, CNTX = context unit, HID = 
hidden state unit.  



 
Figure S2. The signal gain model, linear integrator model variants and active integrator model variants 
account for prior data on hierarchical context dependence. Related to STAR Methods and Figures 1 and  
5. (A) Example of training sequences (intact sequences) and testing sequences (long scale, medium scale 
and fine scale scrambled sequences). Context dependence was measured by correlating the hidden 



representation between the intact and different levels of scrambled sequences. The target element (i.e. 
the last element of each sub-sequence) for correlation is marked with red. (B) The predicted correlation 
of hidden representations in regions that are more / less sensitive to temporal context. (C) The signal gain 
model was able to account for both of the key empirical phenomena of hierarchical context dependence 
(P1 and P2, above). Because the noise added to the internal representations varied in magnitude across 
processing stages and across levels of scrambling, the signal gain model generated the pattern of hierarchy 
of context dependence: the higher “stages” of the signal gain model generated lower correlation between 
intact and scrambled stimuli (left). We observed a similar pattern when testing the model on temporal 
structures that it was never trained on (right). One could plausibly amend the signal gain model to 
generate a learning effect, by positing that the noise level is increased when processing unfamiliar stimuli.  
Overall, we conclude that the signal gain model could account for the phenomenon of hierarchical context 
dependence. (D) The PLI model showed more sensitivity to context change when the b parameter was 
decreased (i.e. when the model preserved more temporal context, analogous to the higher-levels of a 
hierarchical model). However, this context-dependence effect was not specific to sequences that were 
seen during training – it was also observed when training and testing employed completely different 
sequences. (E) The HLI model showed more sensitivity to context change at higher levels. This hierarchical 
context dependence effect was stronger than in the PLI model. However, this context dependence was 
not specific to sequences that were seen during training. (F) The PAT model trained with structured 
sequences showed more sensitivity to context change when the 𝜏	parameter was increased (i.e. when the 
model preserved more hidden representation, analogous to the higher-level circuit). The effect was mild 
and was not specific to sequences that were seen during training. (G) The HAT model, when trained with 
structured sequences, exhibited a hierarchy of context dependence across different levels of the model. 
Importantly, this context dependence effect in HAT was much stronger when the model was trained and 
tested on the same sequences. In other words, the context dependence in HAT depends on the model’s 
learning of temporal structure. (H) The HAT variant with no gating mechanism (HAT-NG) showed a similar 
pattern to the PLI and signal gain results: the higher levels of the model showed more context dependence, 
but the pattern generated was not specific to the structure of the training sequences. (I) The HAT variant 
with only transmission gating (HAT-TG), when trained with structured sequences, showed a hierarchy of 
context dependence across different levels of the model. This context effect was even stronger when the 
model was trained and tested on the same sequences. (J) The HAT variant with only local gating (HAT-LG) 
showed a hierarchy of context dependence across different levels of the model, but the pattern generated 
was not specific to the structure of the training sequences. (K) During training with the structured 
sequences, all levels of the HAT model exhibited a decrease in reconstruction error Δ with increasing 
training duration. (L) Layer-specific reconstruction error in the HAT model when testing with different 
levels of scrambled sequences: intact sequence, long-scale scrambled sequences, medium-scale 
scrambled sequences and fine-scale scrambled sequences. More finely scrambled sequences generated 
larger reconstruction error signals. LSS = long scale scramble, MSS = medium scale scramble, FSS = fine 
scale scramble, PLI = parallel linear integrator, HLI = hierarchical linear integrator, PAT = parallel 
autoencoder-in-time, HAT = hierarchical autoencoders in time. 
 



 
Figure S3. Validation of ROIs for ISPC analysis and logistic model fits - raw rSI and logistic fitting curves 
of a set of excluded ROIs. Related to STAR Methods. (A) The within-group ISPC (rII) was computed within 
an auditory cortex “A1+” parcel, which was functionally defined in a separate naturalistic narrative dataset 
(Simony et al., 2016). The surrogate distribution of rII values was computed by computing ISPC against 
non-matching sentences (shuffling the sentence order, see STAR Methods). In order to visualize the most 
meaningful timescale parameters in regions that responding reliably (in Figures 2 and 3), we chose a 
threshold of rII=0.06. This threshold was not chosen in order to correspond to an arbitrary statistical 
threshold, but nonetheless it is clear that rII= 0.06 lies far outside the null distribution of rII values. Thus, 
we used 0.06 as a conservative threshold for ROIs that showed reliable stimulus-locked response. The 
ROIs included in Figures 2, 3 and 4 (all exhibiting rSS > 0.06) generated a reliable stimulus-locked response 
to the scrambled stimulus. (B) A set of 4 anatomical regions of interest (ROIs) in which the parameters of 
the logistic function could not be confidently recovered after fitting the rSI curves. We visually identified 
parcels in which the rSI curve did not appear to follow a logistic curve. These parcels occur near left 
posterior cingulate cortex, right somatomotor cortex, right insula and the right prefrontal cortex. (C) The 
out-of-sample mean square error (MSE) in predicting rSI curves using either the raw in-sample curve or 
logistic model fit to the in-sample data. The error was measured using a split- half cross-validation method 



(STAR Methods). For all ROIs, the MSE is similar when predicting the out-of-sample rSI curve with 
predictions from a logistic model and when using the raw in-sample rSI curve. For most ROIs, the error 
from the logistic fit is actually lower than from the raw in-sample data. This suggests that the logistic 
function is a valid model for the rSI curves. (D) A set of 9 anatomical ROIs in which the alignment time 
quantified by logistic fitting was not reliable across subjects. We identified these parcels by bootstrapping 
the logistic function parameters. The alignment time was computed for each fold of the bootstrap, from 
which we derived a distribution of alignment values. When more than 10% of these bootstrapped 
alignment time values were more than 3s different from our original alignment time estimate, we 
considered the ROI unreliable. The unreliable parcels occurred near bilateral posterior cingulate cortex, 
right precuneus, right prefrontal cortex, right superior and inferior temporal lobule, and right 
somatomotor cortex. The parcels are individually labeled with their names from the Schaefer parcellation 
(Schaefer et al., 2018). A1 = primary auditory cortex, rII = intact-intact inter-subject pattern correlation, 
rSS  = scramble-scramble inter-subject pattern correlation, rSI = scramble-intact inter-subject pattern 
correlation.  



 
Figure S4. The temporal profiles of context construction mapped for each ROI individually. Related to 
Figure 3. (A) The raw rSIDE:CE curves (blue curves) are overlaid with their corresponding logistic fits 
(orange lines) for each ROI. The shaded blue area indicates a parametric 95% confidence interval on 
each rSI measurement at each time point. Colors on the cortical map indicate the alignment time from 
the logistic fits. (B) Bootstrapped alignment time in individual ROIs. For each ROI, the orange line shows 
the median of 1000 bootstrapped alignment time. The upper line of the box indicates the last data point 
less than Q3, and the lower line indicates the last data point higher than Q1. rSI = intact-scramble inter-
subject pattern correlation, ROI = region of interest, Q3 = third quartile, Q1 = first quartile.   



 
Figure S5. Predictions of temporal integration phenomena by different computational models. Related 
to Figure 5. (A) Predictions of context construction (rSICONSTRUCT) and context forgetting (rSIFORGET) for 



variants of the HAT model with limited gating mechanisms. (left) Each of these HAT variants was trained 
with the full HAT model (all mechanisms intact) but they were then tested with a limited gating 
mechanism, to evaluate the effect of gating. rSICONSTRUCT and rSIFORGET generated by HAT-LG (HAT with 
only local gating, top), HAT-TG (HAT with only transmission gating, middle) and HAT-NG (HAT with 
neither local gating nor transmission gating, bottom). (right) Each of these HAT variants was both 
trained and tested with a limited gating mechanism: rSICONSTRUCT and rSIFORGET generated by HAT-LG (top), 
by HAT-TG (middle) and HAT-NG (bottom). For HAT-LG and HAT-NG, the performance patterns 
resembled that of the linear integrator models, in which the higher levels of the model showed both 
longer alignment times and longer separation times. For the HAT-TG model, we found that the higher 
levels of the model generated somewhat nonspecific sequence representations (similar internal 
representations across diverse inputs). The patterns of the HAT-TG model were difficult to confidently 
interpret, because the separation curves were no longer logistic. Nonetheless, it appeared that HAT-TG 
was again similar to linear integrator models, which could reproduce the hierarchically varied alignment 
time for context construction, but not the distinct separation times for context forgetting. Note that 
higher levels of the HAT model generated more nonspecific representations when transmission gating 
was removed: this implies that higher levels of the model can more readily identify the beginning of a 
distinct new sequence when they receive “surprise” signals generated from the levels below.  (B) Model 
predictions and empirical results of correlation between alignment time (time for integrating prior 
information) and separation time (time for forgetting prior information). PLI predicted that the 
alignment time is positively correlated with the separation time (r=0.91, p<0.0001). HLI predicted that 
the alignment time is positively correlated with the separation time (r=0.99, p<0.0001). HAT predicted 
that the alignment time is not correlated with the separation time (r=-0.24, p=0.08). HAT-NG predicted 
that the alignment time is positively correlated with the separation time (r=0.46, p=0.0003). HAT-LG 
predicted that the alignment time is positively correlated with the separation time (r=0.49, p<0.0001). 
The empirical results showed that for each individual ROI, the alignment time for context construction 
was not correlated with the separation time for context forgetting in that ROI (r=-0.13, p=0.3). Overall, 
we found that only the HAT model (which showed no correlation between alignment time and 
separation time) was compatible with the empirical results. Thus, within the set of models tested, 
context gating mechanisms are essential for capturing the empirical dissociation between alignment 
time and separation time. (C) Measurement of changes in context dependence with learning (left), and 
alignment time across levels (right) for a suite of models and model variants. (left) Model performance 
generating the phenomenon of hierarchical context dependence (Figure S2) when tested on familiar 
sequences (structured) or unfamiliar sequences (shuffled). (right) Model performance in reproducing 
the phenomenon of hierarchical context construction, which manifests as a level-by-level increase in 
alignment times. Only four models successfully generated the hierarchically varied alignment time, as 
quantified by logistic fitting – the PLI model, the HLI model, the HAT-NG model and the HAT full model. 
Out of the four models, the alignment time difference was much larger for HLI (Δ Alignment Time = 1.88) 
and HAT model (Δ Alignment Time = 1.88) than for the PLI model (Δ Alignment Time = 0.46) and HAT-NG 
model (Δ Alignment Time = 0.64).  The signal gain model showed no difference between alignment time 
at Level 1 and Level 3 of the model. As noted above, the PAT model did not successfully learn distinct 
internal representations for different sequence items; as a result is showed larger alignment time at 
Level 1 than Level 3: this occurred because the ISPC values in the PAT model were higher for Level 3 
than for other levels (even for random pairs of stimuli), this biased the alignment time downward, 
because the alignment curve ramped upward from a very high baseline value. HAT = hierarchical 
autoencoders in time, rSI = scramble-intact inter-subject pattern correlation, PLI = parallel linear 
integrator, HLI = hierarchical linear integrator, HAT-NG = HAT with no gating mechanism, PAT = parallel 
autoencoders in time. 
  



 
 
Table S1. Comparison of model performance across a set of four empirical phenomena: hierarchical 
context dependence; learning-dependent integration; hierarchical alignment times; and the 
decoupling of alignment time and separation time. Related to STAR Methods and Figure 5.  
Summary of model architectures and computational mechanisms (gray shading) and performance across 
four metrics (blue shading). Hierarchical context dependence is the basic hierarchical context 
phenomenon reported in prior studies and modeled in Figure S2. The learning effect is a measure of 
whether hierarchical context dependence is selectively observed for familiar (structured) vs unfamiliar 
(shuffled) sequences, as tested in Figure S2B and Figure S5C. The hierarchical variation in alignment time 
is a measure of the difference in alignment time between lower and upper levels of the model, intended 
to capture the empirical phenomenon of hierarchical context construction (Figure 3) modeled in Figure 
S5C. Finally, the absence of a correlation between alignment time and separation time is the 
phenomenon reported here (Figure 5) and modeled in Figure S5B.  
To test the importance of hierarchical architecture, we can compare the HLI and HAT models against 
variants which operate with “parallel” levels. In these models (i.e. PLI and PAT), each unit receives input 
directly from the environment, but integrates the information with distinct time constants. These 
“parallel” integrator models produced smaller context effects than the equivalent models with a stage-
by-stage integration process (Figure S5C). Thus, in light of the anatomical evidence for hierarchical 
organization, hierarchical processing appears to be an important feature for temporal processing.   
To test the importance of context gating mechanism, we tested HAT variants with reduced or absent 
gating mechanisms. These HAT variants generated predictions similar to the linear integrator models: 
they exhibited hierarchical context effects, but alignment time and forgetting time were robustly 
correlated (r = 0.46, p = 0.0003, Figure S5B and Figure S5A, right). In addition, HAT variants that lacked 
gating learned less distinct representations of sequence elements (Figure S5A) and their integration 
processes were less affected by sequence familiarity (Figure S5C). Thus, a context gating mechanism 
appears essential for HAT-like models to capture the empirical data.  
We also tested the importance of the nonlinear temporal integration implemented in the HAT model 
(i.e. the model state at time t+1 is a nonlinear function of the state at t and the input at t.) A nonlinear 
integration mechanism is not sufficient to account for the empirical data on its own, because HAT 
variants without gating (but with nonlinear integration) exhibited small learning effects and their 
alignment times correlated with their separation times (Figure S5B, C). However, none of the linear 
models could account for the full pattern of data (i.e. the four metrics), and the full HAT model equipped 



with the full context gating mechanism, was the most successful. Thus, within the panel of models 
tested, nonlinear integration improves model performance when combined with a context gating 
mechanism.  
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